Added Distribution
This commit is contained in:
		
							
								
								
									
										92
									
								
								.obsidian/workspace.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										92
									
								
								.obsidian/workspace.json
									
									
									
									
										vendored
									
									
								
							@@ -55,44 +55,16 @@
 | 
			
		||||
            "state": {
 | 
			
		||||
              "type": "markdown",
 | 
			
		||||
              "state": {
 | 
			
		||||
                "file": "Gruppen/MeWi 1.md",
 | 
			
		||||
                "file": "Lectures/06 22.11.2024.md",
 | 
			
		||||
                "mode": "source",
 | 
			
		||||
                "source": false
 | 
			
		||||
              },
 | 
			
		||||
              "icon": "lucide-file",
 | 
			
		||||
              "title": "MeWi 1"
 | 
			
		||||
            }
 | 
			
		||||
          },
 | 
			
		||||
          {
 | 
			
		||||
            "id": "d4d973e0d0e2e072",
 | 
			
		||||
            "type": "leaf",
 | 
			
		||||
            "state": {
 | 
			
		||||
              "type": "markdown",
 | 
			
		||||
              "state": {
 | 
			
		||||
                "file": "Gruppen/MeWi 2.md",
 | 
			
		||||
                "mode": "source",
 | 
			
		||||
                "source": false
 | 
			
		||||
              },
 | 
			
		||||
              "icon": "lucide-file",
 | 
			
		||||
              "title": "MeWi 2"
 | 
			
		||||
            }
 | 
			
		||||
          },
 | 
			
		||||
          {
 | 
			
		||||
            "id": "91b08793b1132c55",
 | 
			
		||||
            "type": "leaf",
 | 
			
		||||
            "state": {
 | 
			
		||||
              "type": "markdown",
 | 
			
		||||
              "state": {
 | 
			
		||||
                "file": "Lectures/05 15.11.2024.md",
 | 
			
		||||
                "mode": "source",
 | 
			
		||||
                "source": false
 | 
			
		||||
              },
 | 
			
		||||
              "icon": "lucide-file",
 | 
			
		||||
              "title": "05 15.11.2024"
 | 
			
		||||
              "title": "06 22.11.2024"
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
        ],
 | 
			
		||||
        "currentTab": 5
 | 
			
		||||
        "currentTab": 3
 | 
			
		||||
      }
 | 
			
		||||
    ],
 | 
			
		||||
    "direction": "vertical"
 | 
			
		||||
@@ -210,10 +182,10 @@
 | 
			
		||||
            "state": {
 | 
			
		||||
              "type": "outline",
 | 
			
		||||
              "state": {
 | 
			
		||||
                "file": "Lectures/17 21.02.2025.md"
 | 
			
		||||
                "file": "Lectures/06 22.11.2024.md"
 | 
			
		||||
              },
 | 
			
		||||
              "icon": "lucide-list",
 | 
			
		||||
              "title": "Outline of 17 21.02.2025"
 | 
			
		||||
              "title": "Outline of 06 22.11.2024"
 | 
			
		||||
            }
 | 
			
		||||
          },
 | 
			
		||||
          {
 | 
			
		||||
@@ -255,19 +227,33 @@
 | 
			
		||||
      "table-editor-obsidian:Advanced Tables Toolbar": false
 | 
			
		||||
    }
 | 
			
		||||
  },
 | 
			
		||||
  "active": "91b08793b1132c55",
 | 
			
		||||
  "active": "91e68fc77697e0f9",
 | 
			
		||||
  "lastOpenFiles": [
 | 
			
		||||
    "Material/3.Lösungen_Extended_Applications.slides.html",
 | 
			
		||||
    "Material/wise_24_25/Folien/3.Lösungen_Extended_Applications.ipynb",
 | 
			
		||||
    "Material/wise_24_25/Folien/Untitled.ipynb",
 | 
			
		||||
    "Material/wise_24_25/Folien",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/4.NumPy_MatPlotLib.ipynb",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/3.Extended_Applications.ipynb",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/2.Tutorial.ipynb",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/1.Tutorial.ipynb",
 | 
			
		||||
    "Material/wise_24_25/3.Extended_Applications.ipynb",
 | 
			
		||||
    "Material/wise_24_25/2.Tutorial.ipynb",
 | 
			
		||||
    "Material/wise_24_25/1.Tutorial.ipynb",
 | 
			
		||||
    "Lectures/05 15.11.2024.md",
 | 
			
		||||
    "Gruppen/MeWi 1.md",
 | 
			
		||||
    "Lectures/27.11.2024.md",
 | 
			
		||||
    "Lectures/06 22.11.2024.md",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/5.SciPy.ipynb",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/Untitled.ipynb",
 | 
			
		||||
    "Material/Untitled.ipynb",
 | 
			
		||||
    "Timetable.md",
 | 
			
		||||
    "Lectures/16 14.02.2025.md",
 | 
			
		||||
    "Lectures/17 21.02.2025.md",
 | 
			
		||||
    "To Do.md",
 | 
			
		||||
    "Gruppen/Engineering 1.md",
 | 
			
		||||
    "Gruppen/MeWi 7 (DiKum).md",
 | 
			
		||||
    "Gruppen/MeWi 6.md",
 | 
			
		||||
    "Gruppen/MeWi 5.md",
 | 
			
		||||
    "Gruppen/MeWi 4.md",
 | 
			
		||||
    "Gruppen/MeWi 3.md",
 | 
			
		||||
    "Gruppen/MeWi 2.md",
 | 
			
		||||
    "Material/3.Extended_Applications_Lösungen.html",
 | 
			
		||||
    "Material/3.Lösungen_Extended_Applications.html",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/2.Tutorial_2.ipynb",
 | 
			
		||||
    "Material/wise_24_25/lernmaterial/1.Tutorial_1.ipynb",
 | 
			
		||||
    "Material/testfile.txt",
 | 
			
		||||
    "Material/V4.ipynb",
 | 
			
		||||
    "Material/Tutorial2_Lösungen.ipynb",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/logo2.png",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/grace_hopper.jpg",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/Minduka_Present_Blue_Pack.png",
 | 
			
		||||
@@ -279,17 +265,6 @@
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/subplots.svg",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/subplots.png",
 | 
			
		||||
    "Lectures/04 08.11.2024.md",
 | 
			
		||||
    "Gruppen/Engineering 1.md",
 | 
			
		||||
    "Gruppen/MeWi 4.md",
 | 
			
		||||
    "Gruppen/MeWi 5.md",
 | 
			
		||||
    "Gruppen/MeWi 3.md",
 | 
			
		||||
    "Gruppen/MeWi 2.md",
 | 
			
		||||
    "Gruppen/MeWi 1.md",
 | 
			
		||||
    "Gruppen/MeWi 7 (DiKum).md",
 | 
			
		||||
    "Gruppen/MeWi 6.md",
 | 
			
		||||
    "To Do.md",
 | 
			
		||||
    "Timetable.md",
 | 
			
		||||
    "Lectures/17 21.02.2025.md",
 | 
			
		||||
    "Lectures/03 01.11.2024.md",
 | 
			
		||||
    "Lectures/02 25.10.2024.md",
 | 
			
		||||
    "README.md",
 | 
			
		||||
@@ -299,9 +274,6 @@
 | 
			
		||||
    "Material/README.md",
 | 
			
		||||
    "Material/ToDo.md",
 | 
			
		||||
    "Student List.md",
 | 
			
		||||
    "Lectures/16 14.02.2025.md",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/underscore/README.md",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/jquery-color/README.md",
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/jquery/README.md"
 | 
			
		||||
    "Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/underscore/README.md"
 | 
			
		||||
  ]
 | 
			
		||||
}
 | 
			
		||||
@@ -10,7 +10,7 @@ tags:
 | 
			
		||||
| Name           | Punkte | Durchschnitt | Jupyter Kennung                  | Mail                                                                      |
 | 
			
		||||
| -------------- | ------ | ------------ | -------------------------------- | ------------------------------------------------------------------------- |
 | 
			
		||||
| Janna Heiny    |        |              | 3140c4b62381a2203803f8b237118244 | [j.heiny@tu-braunschweig.de](mailto:j.heiny@tu-braunschweig.de)           |
 | 
			
		||||
| Milena Krieger |        |              | 8be9a4cc0b240a18171892b873dc2cb8 | [m.krieger@tu-braunschweig.de](mailto:m.krieger@tu-braunschweig.de)       |
 | 
			
		||||
| Milena Krieger | 30     |              | 8be9a4cc0b240a18171892b873dc2cb8 | [m.krieger@tu-braunschweig.de](mailto:m.krieger@tu-braunschweig.de)       |
 | 
			
		||||
| Xiaowei Wang   |        |              | 39dc5bd7686c3280247aacee82c9818e | [xiaowei.wang@tu-braunschweig.de](mailto:xiaowei.wang@tu-braunschweig.de) |
 | 
			
		||||
|                |        |              |                                  |                                                                           |
 | 
			
		||||
|                |        |              |                                  |                                                                           |
 | 
			
		||||
 
 | 
			
		||||
@@ -12,8 +12,8 @@ tags:
 | 
			
		||||
| Izabel Mike         | 29.5   |              | 8c710a24debf6159659d1e58dd975ce2 | [i.mike@tu-braunschweig.de](mailto:i.mike@tu-braunschweig.de)           |
 | 
			
		||||
| Lara Troschke       | 20.5   |              | 7b441c67713f2a49811625905612f19b | [l.troschke@tu-braunschweig.de](mailto:l.troschke@tu-braunschweig.de)   |
 | 
			
		||||
| Inga-Brit Turschner | 25.5   |              | 72f0b5fd2cdf4dd808ca9a3add584c75 | [i.turschner@tu-braunschweig.de](mailto:i.turschner@tu-braunschweig.de) |
 | 
			
		||||
| Yannik Haupt        |        |              | f4f597c57d8a31960750e0647f917ed3 |                                                                         |
 | 
			
		||||
|                     |        |              |                                  |                                                                         |
 | 
			
		||||
| Yannik Haupt        |        |              | f4f597c57d8a31960750e0647f917ed3 | [y.haupt@tu-braunschweig.de](mailto:y.haupt@tu-braunschweig.de)         |
 | 
			
		||||
| Aurela Brahimi      |        |              | 5ce6c08f9b055ca085232da514623ca4 | [a.brahimi@tu-braunschweig.de](mailto:a.brahimi@tu-braunschweig.de)     |
 | 
			
		||||
 | 
			
		||||
# Notizen
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -8,9 +8,9 @@ tags:
 | 
			
		||||
# Mitglieder
 | 
			
		||||
 | 
			
		||||
| Name              | Punkte | Durchschnitt | Jupyter Kennung                  | Mail                                                                          |
 | 
			
		||||
| ----------------- | ------ | ------------ | --------------- | ----------------------------------------------------------------------------- |
 | 
			
		||||
| ----------------- | ------ | ------------ | -------------------------------- | ----------------------------------------------------------------------------- |
 | 
			
		||||
| Fabian Rothberger |        |              |                                  | [f.rothberger@tu-braunschweig.de](mailto:f.rothberger@tu-braunschweig.de)     |
 | 
			
		||||
| Flemming Schur    |        |              |                 | [flemming.schur@tu-braunschweig.de](mailto:flemming.schur@tu-braunschweig.de) |
 | 
			
		||||
| Flemming Schur    |        |              | df2b997f3ff3e1f7395fb071bb6c9f17 | [flemming.schur@tu-braunschweig.de](mailto:flemming.schur@tu-braunschweig.de) |
 | 
			
		||||
| Josefine Sinkemat |        |              |                                  | [j.sinkemat@tu-braunschweig.de](mailto:j.sinkemat@tu-braunschweig.de)         |
 | 
			
		||||
|                   |        |              |                                  |                                                                               |
 | 
			
		||||
|                   |        |              |                                  |                                                                               |
 | 
			
		||||
 
 | 
			
		||||
@@ -8,12 +8,12 @@ tags:
 | 
			
		||||
# Mitglieder
 | 
			
		||||
 | 
			
		||||
| Name             | Punkte | Durchschnitt | Jupyter Kennung                  | Mail                                                                    |
 | 
			
		||||
| --------------- | ------ | ------------ | -------------------------------- | ----------------------------------------------------------------------- |
 | 
			
		||||
| ---------------- | ------ | ------------ | -------------------------------- | ----------------------------------------------------------------------- |
 | 
			
		||||
| Nele Grundke     |        |              | f61621cbe911f21ddd781c21e4528b07 | [n.grundke@tu-braunschweig.de](mailto:n.grundke@tu-braunschweig.de)     |
 | 
			
		||||
| Julia Limbach   |        |              |                                  | [j.limbach@tu-braunschweig.de](mailto:j.limbach@tu-braunschweig.de)     |
 | 
			
		||||
| Julia Limbach    |        |              | 2f7f31211275384791a1799cd95750bf | [j.limbach@tu-braunschweig.de](mailto:j.limbach@tu-braunschweig.de)     |
 | 
			
		||||
| Melina Sablotny  |        |              | 4111400b4ae2c863a1c4b73a21f87093 | [m.sablotny@tu-braunschweig.de](mailto:m.sablotny@tu-braunschweig.de)   |
 | 
			
		||||
| Lucy Thiele      |        |              | 4c0ddab5bed6ff025cee04f8d73301a3 | [lucy.thiele@tu-braunschweig.de](mailto:lucy.thiele@tu-braunschweig.de) |
 | 
			
		||||
|                 |        |              |                                  |                                                                         |
 | 
			
		||||
| Marleen, Adolphi |        |              | bb549f9016ee05a07ce271c10482879d | [m.adolphi@tu-braunschweig.de](mailto:m.adolphi@tu-braunschweig.de)     |
 | 
			
		||||
 | 
			
		||||
# Notizen
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -10,7 +10,7 @@ tags:
 | 
			
		||||
| Name                | Punkte | Durchschnitt | Jupyter Kennung                  | Mail                                                                              |
 | 
			
		||||
| ------------------- | ------ | ------------ | -------------------------------- | --------------------------------------------------------------------------------- |
 | 
			
		||||
| Abdalaziz Abunjaila | 30.5   |              | 79b388885f89954decaefc9e19aa8871 | [a.abunjaila@tu-braunschweig.de](mailto:a.abunjaila@tu-braunschweig.de)           |
 | 
			
		||||
| Marleen Adolphi     |        |              | bb549f9016ee05a07ce271c10482879d | [m.adolphi@tu-braunschweig.de](mailto:m.adolphi@tu-braunschweig.de)               |
 | 
			
		||||
|                     |        |              |                                  |                                                                                   |
 | 
			
		||||
| Alea Schleier       |        |              | beb3bcd7515400b58f6fab7567193cbf | [a.schleier@tu-braunschweig.de](mailto:a.schleier@tu-braunschweig.de)             |
 | 
			
		||||
| Marie Seeger        |        |              | f7017b11a2904a74302c9f4f217779fb | [marie.seeger@tu-braunschweig.de](mailto:marie.seeger@tu-braunschweig.de)         |
 | 
			
		||||
| Lilly-Lu Warnken    |        |              | 5fe894b59ff39da82ac4361dcb2d35b8 | [lilly-lu.warnken@tu-braunschweig.de](mailto:lilly-lu.warnken@tu-braunschweig.de) |
 | 
			
		||||
 
 | 
			
		||||
@@ -10,3 +10,346 @@ tags:
 | 
			
		||||
- [ ] Bernoulli Distributions
 | 
			
		||||
- [ ] Binomial Distributions
 | 
			
		||||
- [ ] Normal Distributions
 | 
			
		||||
- [ ] Regression
 | 
			
		||||
 | 
			
		||||
## Aufgabe - Erster eigener Plot Square Root
 | 
			
		||||
 | 
			
		||||
Analog zu voheriger Erklärung plotten Sie im folgenden die Funktion Square Root, Mathematisch definiert als $f(x) = \sqrt x; \quad x \geq 0$.
 | 
			
		||||
 | 
			
		||||
Gehen Sie dabei wie folgt vor:
 | 
			
		||||
 | 
			
		||||
1. Definieren Sie einen **geeigneten** [Linespace](https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy-linspace) für die Zahlenraum 0...100. (Tipp: Achten Sie auf die Definition! Die Wurzel ist nur für positive Zahlen definiert.)
 | 
			
		||||
2. Berechnen Sie mittels der Funktion [np.sqrt](https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt) die Werte für die Wurzel.
 | 
			
		||||
3. Plotten Sie das Ergebnis
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import numpy as np 
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
# geeigneter Linespace für den Zahlenraum 0 bis 100
 | 
			
		||||
x = np.linspace (0, 100, 500)  # 500 Punkte für eine glatte Darstellung 
 | 
			
		||||
 | 
			
		||||
# Berechnen der Wurzelfunktion 
 | 
			
		||||
y = np.sqrt(x)
 | 
			
		||||
 | 
			
		||||
# plotten der Ergebnisse 
 | 
			
		||||
plt.plot(x, y, label="f(x)= √x")
 | 
			
		||||
plt.title("Plot der Wurzelfunktion")
 | 
			
		||||
plt.xlabel("x")
 | 
			
		||||
plt.ylabel("f(x)")
 | 
			
		||||
plt.grid(True)
 | 
			
		||||
plt.legend()
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Alea Schleier
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Aufgabe[¶](https://jupyter2.ifn.ing.tu-bs.de:8000/user/instructor-einfhrung-in-die-prog/formgrader/submissions/14fa26f422cf4db2a97309e97b0bfdbd/?index=16#Aufgabe)
 | 
			
		||||
 | 
			
		||||
_6 Punkte_
 | 
			
		||||
 | 
			
		||||
Plote die Zufallszahlen eines _Permuted Congruent Generators_ mittels NumPy & MatPlotLib.
 | 
			
		||||
 | 
			
		||||
- Gegeben ist der Anfangszustand des Generators.
 | 
			
		||||
- Nutze die Dokumentation und rufe den `default_rng` aus dem `numpy.random` Modul, **20** mal auf speichere die Werte in der variablen `pcgs`. _(Tipp: Nutze ein NumPy Array)_
 | 
			
		||||
- Sortiere im nächsten Schritt die in `pcgs` gespeicherten Werte und speichere diese in `pcgs_sorted`
 | 
			
		||||
- Plotte sinnvoll beide Array. Gestalte den Plot angemessen.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import numpy as np  # Import NumPy
 | 
			
		||||
import matplotlib.pyplot as plt  # Import Matplotlib for plotting
 | 
			
		||||
 | 
			
		||||
# 1. Setting the random seed
 | 
			
		||||
np.random.seed(42)
 | 
			
		||||
 | 
			
		||||
# 2. Generate 20 random numbers using the default_rng generator
 | 
			
		||||
rng = np.random.default_rng()  # Initialize the default random number generator
 | 
			
		||||
pcgs = rng.random(20)  # Generate 20 random numbers
 | 
			
		||||
 | 
			
		||||
# 3. Sort the generated numbers and store them in pcgs_sorted
 | 
			
		||||
pcgs_sorted = np.sort(pcgs)  # Sort the numbers
 | 
			
		||||
 | 
			
		||||
# 4. Print the generated arrays for verification
 | 
			
		||||
print("PCGs:", pcgs)
 | 
			
		||||
print("Sorted PCGs:", pcgs_sorted)
 | 
			
		||||
 | 
			
		||||
# 5. Plot both arrays
 | 
			
		||||
plt.figure(figsize=(8, 6))
 | 
			
		||||
plt.plot(pcgs, label='PCGs (Unsorted)', linestyle='dashed', marker='o')
 | 
			
		||||
plt.plot(pcgs_sorted, label='PCGs (Sorted)', linestyle='solid', marker='x')
 | 
			
		||||
plt.title('Permuted Congruent Generator: Unsorted vs Sorted')
 | 
			
		||||
plt.xlabel('Index')
 | 
			
		||||
plt.ylabel('Value')
 | 
			
		||||
plt.legend()
 | 
			
		||||
plt.grid(True)
 | 
			
		||||
plt.show()
 | 
			
		||||
``` 
 | 
			
		||||
Abdalaziz Abunjaila 
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
np.random.seed(42) # Setting a fixed start Value for the Generator
 | 
			
		||||
pcgs: np.array = None
 | 
			
		||||
pcgs_sorted: np.array = None
 | 
			
		||||
 | 
			
		||||
#mycode
 | 
			
		||||
import numpy as np
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
rng = np.random.default_rng(seed=42)
 | 
			
		||||
 | 
			
		||||
pcgs = np.array([rng.random() for _ in range(20)])
 | 
			
		||||
 | 
			
		||||
pcgs_sorted = np.sort(pcgs)
 | 
			
		||||
 | 
			
		||||
plt.figure(figsize=(10, 5))
 | 
			
		||||
 | 
			
		||||
plt.plot(pcgs, label="PCG Zufallszahlen", color='blue', marker='o', linestyle='--')
 | 
			
		||||
 | 
			
		||||
plt.plot(pcgs_sorted, label="Sortierte PCG Zufallszahlen", color='green', marker='x', linestyle='-')
 | 
			
		||||
 | 
			
		||||
plt.title("PCG Zufallszahlen und sortierte PCG Zufallszahlen")
 | 
			
		||||
plt.xlabel("Index")
 | 
			
		||||
plt.ylabel("Wert")
 | 
			
		||||
plt.legend()
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Donika Nuhiu
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
np.random.seed(42) # Setting a fixed start Value for the Generator
 | 
			
		||||
pcgs: np.array = None
 | 
			
		||||
pcgs_sorted: np.array = None
 | 
			
		||||
 | 
			
		||||
import numpy as np 
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
# Erstellen des Zufallsgenerators und Generation von 20 Zufallszahlen 
 | 
			
		||||
rng = np.random.default_rng()  # Initialisiere den Permuted Congruent Generator 
 | 
			
		||||
pcgs = rng.random(20)  # 20 Zufallszahlen erzeugen und in ein NumPy Array speichern
 | 
			
		||||
 | 
			
		||||
# Sortieren der Zufallszahlen 
 | 
			
		||||
pcgs_sorted = np.sort(pcgs)
 | 
			
		||||
 | 
			
		||||
# Plotten der Ergebnisse
 | 
			
		||||
plt.figure(figsize=(10, 6))
 | 
			
		||||
 | 
			
		||||
# Original Zufallszahlen 
 | 
			
		||||
plt.plot(pcgs, marker='o', linestyle='-', color='blue', label='Original-Zufallszahlen')
 | 
			
		||||
 | 
			
		||||
# Sortierte Zufallszahlen 
 | 
			
		||||
plt.plot(pcgs_sorted, marker='x', linestyle='--', color='red', label='Sortierte Zufallszahlen')
 | 
			
		||||
 | 
			
		||||
# Gestalte den Plot 
 | 
			
		||||
plt.title("Vergleich: Original- und sortierte Zufallszahlen")
 | 
			
		||||
plt.xlabel("Index")
 | 
			
		||||
plt.ylabel("Zufallswert")
 | 
			
		||||
plt.grid(True)
 | 
			
		||||
plt.legend()
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Alea Schleier
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
np.random.seed(42) # Setting a fixed start Value for the Generator
 | 
			
		||||
pcgs: np.array = None
 | 
			
		||||
pcgs_sorted: np.array = None
 | 
			
		||||
 | 
			
		||||
# YOUR CODE HERE
 | 
			
		||||
rng = np.random.default_rng(42)
 | 
			
		||||
pcgs = rng.random(20)
 | 
			
		||||
pcgs_sorted = np.sort(pcgs)
 | 
			
		||||
 | 
			
		||||
x = np.linspace(0, 20, num=20)
 | 
			
		||||
 | 
			
		||||
plt.plot(x, pcgs, color='c', label='Zufallszahlen')
 | 
			
		||||
plt.plot(x, pcgs_sorted, color='b', label='Zufallszahlen (sortiert)')
 | 
			
		||||
 | 
			
		||||
plt.title('Zufallszahlen eines PCG')
 | 
			
		||||
plt.xlabel('Index')
 | 
			
		||||
plt.ylabel('Wert')
 | 
			
		||||
 | 
			
		||||
plt.xlim(0, 20)
 | 
			
		||||
plt.ylim(0, 1.25)
 | 
			
		||||
plt.xticks(np.arange(0, 20, step=3))
 | 
			
		||||
plt.yticks(np.arange(0, 1.25, step=0.2))
 | 
			
		||||
 | 
			
		||||
mean_value = np.mean(pcgs)
 | 
			
		||||
plt.axhline(y=mean_value, color='r', linestyle="dashed", label=f'Durchschnitt: {mean_value:.2f}')
 | 
			
		||||
 | 
			
		||||
plt.legend()
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Nova Eib
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
np.random.seed(42) # Setting a fixed start Value for the Generator
 | 
			
		||||
pcgs: np.array = None
 | 
			
		||||
pcgs_sorted: np.array = None
 | 
			
		||||
 | 
			
		||||
# YOUR CODE HERE
 | 
			
		||||
import numpy as np
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
rng = np.random.default_rng(seed=42)
 | 
			
		||||
 | 
			
		||||
pcgs = rng.random(20)
 | 
			
		||||
 | 
			
		||||
pcgs_sorted = np.sort(pcgs)
 | 
			
		||||
 | 
			
		||||
plt.figure(figsize=(10, 6))
 | 
			
		||||
 | 
			
		||||
plt.plot(pcgs, 'o-', label='Unsortiert')
 | 
			
		||||
 | 
			
		||||
plt.plot(pcgs_sorted, 's-', label='Sortiert')
 | 
			
		||||
 | 
			
		||||
plt.title('Zufallszahlen eines Permuted Congruent Generators')
 | 
			
		||||
plt.xlabel('Index')
 | 
			
		||||
plt.ylabel('Wert')
 | 
			
		||||
plt.grid(True)
 | 
			
		||||
plt.legend()
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Izabel Mike
 | 
			
		||||
 | 
			
		||||
### Aufgabe[¶](https://jupyter2.ifn.ing.tu-bs.de:8000/user/instructor-einfhrung-in-die-prog/formgrader/submissions/f483499addec4dd8886a0ee278677732/?index=21#Aufgabe)
 | 
			
		||||
 | 
			
		||||
_5 Punkte_
 | 
			
		||||
 | 
			
		||||
Ihnen ist ein Datenset `sec_school` einer Hauptschule gegeben, welches die Klassenstufen von 5 bis 9 auf die Anzahl ihrer Schüler im Jahrgang mappt.
 | 
			
		||||
 | 
			
		||||
Definieren Sie einen Barplot. Gehen Sie dabei wie folgt vor:
 | 
			
		||||
 | 
			
		||||
1. Definieren Sie ein geeignetes Farbschema zur Darstellung der Daten.
 | 
			
		||||
2. Extrahieren Sie die Schlüssel und Werte aus dem Datenset und übergeben Sie diese zusammen mit den Farbwerten an die Funktion `plt.bar`.
 | 
			
		||||
3. Setzen Sie geeignete Werte für die X & Y-Achse.
 | 
			
		||||
4. Setzen Sie einen geeigneten Titel für den Plot.
 | 
			
		||||
5. Plotten Sie den Werte
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
sec_school = {
 | 
			
		||||
    '5. Klasse': 29,
 | 
			
		||||
    '6. Klasse': 35,
 | 
			
		||||
    '7. Klasse': 25,
 | 
			
		||||
    '8. Klasse': 28,
 | 
			
		||||
    '9. Klasse': 31
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bar_colors = ["purple", "blue", "green", "orange", "red"]
 | 
			
		||||
 | 
			
		||||
plt.bar(sec_school.keys(), sec_school.values(), color=bar_colors)
 | 
			
		||||
 | 
			
		||||
plt.xlabel("Klassenstufen")
 | 
			
		||||
plt.ylabel("Anzahl Schüler")
 | 
			
		||||
plt.title("Anzahl der Schüler pro Klassenstufe in der Hauptschule")
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Donika Nuhiu
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
sec_school = {
 | 
			
		||||
    '5. Klasse': 29,
 | 
			
		||||
    '6. Klasse': 35,
 | 
			
		||||
    '7. Klasse': 25,
 | 
			
		||||
    '8. Klasse': 28,
 | 
			
		||||
    '9. Klasse': 31
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
colors = ['blue', 'green', 'orange', 'purple', 'red']
 | 
			
		||||
 | 
			
		||||
grades = list(sec_school.keys())  # Klassenstufen 
 | 
			
		||||
students= list(sec_school.values())  # Schüleranzahl 
 | 
			
		||||
 | 
			
		||||
plt.bar (grades, students, color=colors)
 | 
			
		||||
 | 
			
		||||
plt.xlabel("Klassenstufen")
 | 
			
		||||
plt.ylabel("Anzahl der Schüler")
 | 
			
		||||
 | 
			
		||||
plt.title("Schüleranzahl pro Klassenstufe in der Hauptschule")
 | 
			
		||||
 | 
			
		||||
plt.grid(axis='y', linestyle='--', alpha=0.7)  # Gitterlinie zur besseren Lesbarkeit 
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Alea Schleier
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
bar_colors = ["red", "orangered", "darkorange", "orange", "gold"]
 | 
			
		||||
 | 
			
		||||
plt.bar(sec_school.keys(), sec_school.values(), color=bar_colors)
 | 
			
		||||
 | 
			
		||||
plt.title("Klassenverteilung (Hauptschule)")
 | 
			
		||||
plt.ylabel("Anzahl Kinder")
 | 
			
		||||
plt.xlabel("Klassenstufen") 
 | 
			
		||||
 | 
			
		||||
# Ich finde die Werte der x- und y-Achse schon passend, also mach mich wenn dann für meine Fehleinschätzung und nicht für meinen Analphabetismus fertig, ich habe den Punkt gelesen, danke
 | 
			
		||||
 | 
			
		||||
mean_value = np.mean(list(sec_school.values()))
 | 
			
		||||
plt.axhline(y=mean_value, color='blue', linestyle="dashed", label=f'Durchschnitt: {mean_value:.2f}')
 | 
			
		||||
 | 
			
		||||
plt.legend()
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Nova Eib
 | 
			
		||||
## Aufgabe[¶](https://jupyter2.ifn.ing.tu-bs.de:8000/user/instructor-einfhrung-in-die-prog/formgrader/submissions/a02d96d8a5c8452b91ac790b5fb5ce9b/?index=24#Aufgabe)
 | 
			
		||||
 | 
			
		||||
_5 Punkte_
 | 
			
		||||
 | 
			
		||||
Ihnen ist ein Datenset `sec_school` einer Hauptschule gegeben, welches die Klassenstufen von 5 bis 9 auf die Anzahl ihrer Schüler im Jahrgang mappt.
 | 
			
		||||
 | 
			
		||||
Definieren Sie einen Pieplot. Gehen Sie dabei wie folgt vor:
 | 
			
		||||
 | 
			
		||||
1. Definieren Sie ein geeignetes Farbschema zur Darstellung der Daten.
 | 
			
		||||
2. Extrahieren Sie die Schlüssel und Werte aus dem Datenset und übergeben Sie diese zusammen mit den Farbwerten an die Funktion `plt.pie`. (Nutzen Sie zum Anzeigen der Prozentwerte)
 | 
			
		||||
3. Lassen Sie die 6. Klasse 25% und die 9. Klasse 40% explodieren.
 | 
			
		||||
4. Setzen Sie einen geeigneten Titel für den Plot.
 | 
			
		||||
5. Plotten Sie den Werte.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
#geeignetes Farbschema definieren, Kontrastreiche Farben zur einfachen Unterscheidung 
 | 
			
		||||
colors = ['#ff6f61', '#6b5b95', '#88b04b', '#f7cac9', '#92a8d1']
 | 
			
		||||
 | 
			
		||||
#extrahieren der Werte und Schlüssel
 | 
			
		||||
keys = list (sec_school.keys())
 | 
			
		||||
values = list (sec_school.values())
 | 
			
		||||
 | 
			
		||||
#explodieren der 6. und 9. Klassenstufe 
 | 
			
		||||
explode = [0, 0.25, 0, 0, 0.4]
 | 
			
		||||
 | 
			
		||||
plt.pie(values, labels = keys, colors = colors, autopct = '%1.1f%%', startangle = 90, explode = explode)
 | 
			
		||||
plt.title ('Verteilung der Schüler*innen auf die unterschiedlichen Klassenstufen')
 | 
			
		||||
plt.axis ('equal')
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Lara Troschke
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
pie_colors = ["red", "orangered", "darkorange", "orange", "gold"]
 | 
			
		||||
 | 
			
		||||
plt.pie(sec_school.values(), labels=sec_school.keys(), autopct='%1.1f%%', explode=[0, 0.25, 0, 0, 0.4], colors=pie_colors)
 | 
			
		||||
 | 
			
		||||
plt.title("Klassenverteilung (Hauptschule)")
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Nova Eib
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
pie_colors = ["lightpink", "darkseagreen", "mistyrose", "cadetblue", "rosybrown"]
 | 
			
		||||
 | 
			
		||||
plt.pie(sec_school.values(), labels=sec_school.keys(), autopct='%1.1f%%', explode=[0, 0.25, 0, 0, 0.4], colors=pie_colors) 
 | 
			
		||||
 | 
			
		||||
plt.title("Klassenverteilung einer Hauptschule")
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
```
 | 
			
		||||
Julia Limbach
 | 
			
		||||
							
								
								
									
										122
									
								
								Material/Untitled.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								Material/Untitled.ipynb
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,122 @@
 | 
			
		||||
{
 | 
			
		||||
 "cells": [
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 1,
 | 
			
		||||
   "id": "d74e7711-ed1a-4749-8827-2e6fa5798d68",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "def lcg (a,c,m, startwert):\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    if a<=0 or c<0 or m<=0 or startwert <0:\n",
 | 
			
		||||
    "        return None #prüfung der werte \n",
 | 
			
		||||
    "    \n",
 | 
			
		||||
    "    x = startwert \n",
 | 
			
		||||
    "    while 1:\n",
 | 
			
		||||
    "        x=(a*x+c)%m\n",
 | 
			
		||||
    "        yield x "
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 2,
 | 
			
		||||
   "id": "2993ac89-2be8-4c61-a6e2-43a1008f2d36",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "def lcg_test(seed: int, scalar: int, modulus: int, offset: int) -> int:\n",
 | 
			
		||||
    "    assert modulus > 0, \"Modulus must be greater than 0\"\n",
 | 
			
		||||
    "    assert 0 <= scalar and scalar < modulus, \"Scalar must be in range 0 <= a < m\"\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    while seed > 1:\n",
 | 
			
		||||
    "        seed = (scalar*seed+offset) % modulus\n",
 | 
			
		||||
    "        assert seed >= 0\n",
 | 
			
		||||
    "        yield seed"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 7,
 | 
			
		||||
   "id": "02a21a6d-0892-44f0-b0fd-6e5f8fe83962",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
     "name": "stdout",
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 3089810780120156248\n",
 | 
			
		||||
      "Correct should be: 3089810780120156248\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 8356396685252565260\n",
 | 
			
		||||
      "Correct should be: 8356396685252565260\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 1921117399837525548\n",
 | 
			
		||||
      "Correct should be: 1921117399837525548\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 14806858147081821235\n",
 | 
			
		||||
      "Correct should be: 14806858147081821235\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 2557599628047639428\n",
 | 
			
		||||
      "Correct should be: 2557599628047639428\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 16453652254840064460\n",
 | 
			
		||||
      "Correct should be: 16453652254840064460\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 15995401842808378843\n",
 | 
			
		||||
      "Correct should be: 15995401842808378843\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 681272290641816305\n",
 | 
			
		||||
      "Correct should be: 681272290641816305\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 10955466795170118648\n",
 | 
			
		||||
      "Correct should be: 10955466795170118648\n",
 | 
			
		||||
      "\n",
 | 
			
		||||
      "Lcg using Cocktailshaker Numbers: 13714992071537968180\n",
 | 
			
		||||
      "Correct should be: 13714992071537968180\n",
 | 
			
		||||
      "\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "s = lcg(3203021881815356449, 11742185885288659963, 2**64-1, 3935559000370003845)\n",
 | 
			
		||||
    "t = lcg_test(3935559000370003845, 3203021881815356449, 2**64-1, 11742185885288659963)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "for _ in range(10):\n",
 | 
			
		||||
    "    stud = next(s)\n",
 | 
			
		||||
    "    instructor = next(t)\n",
 | 
			
		||||
    "    print(\"Lcg using Cocktailshaker Numbers:\", stud)\n",
 | 
			
		||||
    "    print(\"Correct should be:\", instructor, end='\\n\\n')"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": null,
 | 
			
		||||
   "id": "40aeb297-aeb5-4fca-8ae4-cb84c7f13957",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": []
 | 
			
		||||
  }
 | 
			
		||||
 ],
 | 
			
		||||
 "metadata": {
 | 
			
		||||
  "kernelspec": {
 | 
			
		||||
   "display_name": "Python 3 (ipykernel)",
 | 
			
		||||
   "language": "python",
 | 
			
		||||
   "name": "python3"
 | 
			
		||||
  },
 | 
			
		||||
  "language_info": {
 | 
			
		||||
   "codemirror_mode": {
 | 
			
		||||
    "name": "ipython",
 | 
			
		||||
    "version": 3
 | 
			
		||||
   },
 | 
			
		||||
   "file_extension": ".py",
 | 
			
		||||
   "mimetype": "text/x-python",
 | 
			
		||||
   "name": "python",
 | 
			
		||||
   "nbconvert_exporter": "python",
 | 
			
		||||
   "pygments_lexer": "ipython3",
 | 
			
		||||
   "version": "3.12.7"
 | 
			
		||||
  }
 | 
			
		||||
 },
 | 
			
		||||
 "nbformat": 4,
 | 
			
		||||
 "nbformat_minor": 5
 | 
			
		||||
}
 | 
			
		||||
@@ -1707,13 +1707,13 @@
 | 
			
		||||
   "id": "a2fbf6d5-9460-48bc-8183-b2afb9c5c186",
 | 
			
		||||
   "metadata": {
 | 
			
		||||
    "nbgrader": {
 | 
			
		||||
     "grade": false,
 | 
			
		||||
     "grade": true,
 | 
			
		||||
     "grade_id": "cell-9e88f0a0a4a77c47",
 | 
			
		||||
     "locked": true,
 | 
			
		||||
     "locked": false,
 | 
			
		||||
     "points": 3,
 | 
			
		||||
     "schema_version": 3,
 | 
			
		||||
     "solution": false,
 | 
			
		||||
     "task": true
 | 
			
		||||
     "solution": true,
 | 
			
		||||
     "task": false
 | 
			
		||||
    }
 | 
			
		||||
   },
 | 
			
		||||
   "outputs": [
 | 
			
		||||
@@ -2784,7 +2784,7 @@
 | 
			
		||||
   "name": "python",
 | 
			
		||||
   "nbconvert_exporter": "python",
 | 
			
		||||
   "pygments_lexer": "ipython3",
 | 
			
		||||
   "version": "3.12.5"
 | 
			
		||||
   "version": "3.12.7"
 | 
			
		||||
  }
 | 
			
		||||
 },
 | 
			
		||||
 "nbformat": 4,
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										1230
									
								
								Material/wise_24_25/lernmaterial/5.SciPy.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1230
									
								
								Material/wise_24_25/lernmaterial/5.SciPy.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user