Files
Notes/Documents/Arbeit/IFN/Programmieren WiSe 25 26/Time Table.md

5.0 KiB

title, short_desc, tags, timestamp, path, public, update, editor, uuid, feature
title short_desc tags timestamp path public update editor uuid feature
Time Table - Note
Note
Vorlesung
Uni
Work
24.09.2025 - 11:51 true true markdown 1758707464213 thumbnails/external/89b30361e78c63dafa937dce92b1f550.svg

ifn-logo

Time Table

Every Friday from 15-16.30h

Datum Thema
24.10.2025 Organisation
31.10.2025 entfällt
07.11.2025 Tutorial 1 - Printing, Datatypes & Variables, Sequentials, Functions, Conditionals, Conditional Loops, Sequential Loops
14.11.2025 Tutorial 2 - Hash Tables, Error Handling, System Interactions, Modularization, Dataclasses
Documents/Arbeit/IFN/Programmieren WiSe 25 26/Vorlesungen/21.11.2025 Extended Applications - Functions, Generators, Dataclasses, Built-In Modules, Syntax Styling PEP8, Working with AI
Documents/Arbeit/IFN/Programmieren WiSe 25 26/Vorlesungen/28.11.2025 Matplotlib - Plotting basics
NumPy - Multidimensional Arrays, Random Numbers, Efficient Computing
05.12.2025 SciPy - Distributions, Generating & Sampling Data
12.12.2025 Simulation - Monte Carlo, Generating Data
19.12.2025 Pandas - Dataframes, Series, Dataclasses
26.12.2025 entfällt
02.01.2026 entfällt
09.01.2026 Statistical Test Methods - T-Test, Correlations
16.01.2026 Data Analysis - Demo Project
23.01.2026 Folium - Maps, Markers, HTML
30.01.2026 Data Analysis - Demo Project
06.02.2026 Projects
19.02.2026 Prüfung (Termin unter vorbehalt)
20.02.2026 Prüfung (Termin unter vorbehalt)

Ideen:

  • Stock Market Simulation (Animal Crossing)
  • Gini Index 938-828 791-748
gain_week = [
    rand.uniform(-2.5, 2.5, sims)
    for _ in range(7)
]


duration = np.zeros(sims)
for gain in gain_week:
    duration += gain
duration += men

gain_percent = float(
	np.round((duration < avg_weight-3).sum()/sims, decimals=2)
	)

plt.figure(figsize=(10,5))
plt.hist(duration, density=True) 
plt.axvline(avg_weight-3, color='r') 
plt.show()
print(gain_percent)
\text{Birth Rate} = \frac{B}{P} * 1000