Changed: Projects

This commit is contained in:
2025-01-24 13:44:25 +01:00
parent 7356668689
commit 12971ed6ec
14 changed files with 1636 additions and 18594 deletions

View File

@@ -1180,7 +1180,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.12.8"
}
},
"nbformat": 4,

View File

@@ -2,662 +2,247 @@
"cells": [
{
"cell_type": "markdown",
"id": "eff8b0c5-39ae-4c2b-bc67-708039845236",
"metadata": {},
"id": "a6a07ede-5c1d-47ef-91b6-84132185c4c6",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-542ff1287c8952be",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"# To Do\n",
"# Gruppenprojekt Medienwissenschaften - Analysing Facebook posts\n",
"\n",
"- More Explanation\n",
"- Visulazation Excerxise\n",
"- Excerzises a bit more complicated"
"<div style=\"display:flex;\">\n",
" <div style=\"text-align: left\">\n",
" Willkommen zum Gruppenprojekt Medienwissenschaften - Programmierübung Einführung in Python 3.\n",
" </div>\n",
" <img style=\"float: right; margin: 0px 15px 15px 0px\" src=\"https://www.python.org/static/img/python-logo-large.c36dccadd999.png?1576869008\" width=\"100\" />\n",
"</div>\n",
"\n",
"Wenn Sie Fragen oder Verbesserungsvorschläge zum Inhalt oder Struktur der Notebooks haben, dann können sie eine E-Mail an Phil Keier ([p.keier@hbk-bs.de](mailto:p.keier@hbk-bs.de?subject=[SigSys]%20Feedback%20Programmierübung&amp)) oder Martin Le ([martin.le@tu-bs.de](mailto:martin.le@tu-bs.de?subject=[SigSys]%20Feedback%20Programmierübung&amp)) schreiben.\n",
"\n",
"Link zu einem Python Spickzettel: [hier](https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf)\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "8b43eadd-f8a2-44fa-bb87-1f0c6ecc32b2",
"metadata": {},
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-8720e3247ef22c76",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"# Analysing Facebook posts\n",
"Social media plays an important role in peoples everyday life. The social media data has\n",
"many uses, both in the business and social realm. Analysis of social media data would\n",
"help us understand the crowd psychology and improve our business models.\n",
"We are given a piece of data on Facebooks popular posts. Please use Pandas to read the\n",
"data set and perform the following analysis on the given data."
"data set and perform the following analysis on the given data.\n",
"\n",
"Enclosed with this Notebook is the Dataset `facebook.csv`. Your task is to prove or disprove the following hypotheses.\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b3a7db87-762c-4c4e-9c6d-09dd896e8b4e",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "489e967c-b75b-42d4-b479-f8ca1a9e585b",
"cell_type": "markdown",
"id": "d165fa22-796e-4308-a161-337357c54afa",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-5edab9a91540a96e",
"grade_id": "cell-80253b841c02fdf7",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Describe the Dataset\n",
"\n",
"Ask yourself the following questions:\n",
"- What does the data tell us?\n",
"- Which results can / cannot be drawn from the data?\n",
"- Are the data normally distributed?"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0e941e01-268d-40c3-82dc-7c02ea9bbfd4",
"metadata": {
"nbgrader": {
"grade": true,
"grade_id": "cell-99ced721b2ea16c9",
"locked": false,
"points": 0,
"schema_version": 3,
"solution": true,
"task": false
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Page total likes</th>\n",
" <th>Type</th>\n",
" <th>Category</th>\n",
" <th>Post Month</th>\n",
" <th>Post Weekday</th>\n",
" <th>Post Hour</th>\n",
" <th>Paid</th>\n",
" <th>Lifetime Post Total Reach</th>\n",
" <th>Lifetime Post Total Impressions</th>\n",
" <th>Lifetime Engaged Users</th>\n",
" <th>Lifetime Post Consumers</th>\n",
" <th>Lifetime Post Consumptions</th>\n",
" <th>Lifetime Post Impressions by people who have liked your Page</th>\n",
" <th>Lifetime Post reach by people who like your Page</th>\n",
" <th>Lifetime People who have liked your Page and engaged with your post</th>\n",
" <th>comment</th>\n",
" <th>like</th>\n",
" <th>share</th>\n",
" <th>Total Interactions</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>139441</td>\n",
" <td>Photo</td>\n",
" <td>2</td>\n",
" <td>12</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>2752</td>\n",
" <td>5091</td>\n",
" <td>178</td>\n",
" <td>109</td>\n",
" <td>159</td>\n",
" <td>3078</td>\n",
" <td>1640</td>\n",
" <td>119</td>\n",
" <td>4</td>\n",
" <td>79.0</td>\n",
" <td>17.0</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>139441</td>\n",
" <td>Status</td>\n",
" <td>2</td>\n",
" <td>12</td>\n",
" <td>3</td>\n",
" <td>10</td>\n",
" <td>0.0</td>\n",
" <td>10460</td>\n",
" <td>19057</td>\n",
" <td>1457</td>\n",
" <td>1361</td>\n",
" <td>1674</td>\n",
" <td>11710</td>\n",
" <td>6112</td>\n",
" <td>1108</td>\n",
" <td>5</td>\n",
" <td>130.0</td>\n",
" <td>29.0</td>\n",
" <td>164</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>139441</td>\n",
" <td>Photo</td>\n",
" <td>3</td>\n",
" <td>12</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>2413</td>\n",
" <td>4373</td>\n",
" <td>177</td>\n",
" <td>113</td>\n",
" <td>154</td>\n",
" <td>2812</td>\n",
" <td>1503</td>\n",
" <td>132</td>\n",
" <td>0</td>\n",
" <td>66.0</td>\n",
" <td>14.0</td>\n",
" <td>80</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>139441</td>\n",
" <td>Photo</td>\n",
" <td>2</td>\n",
" <td>12</td>\n",
" <td>2</td>\n",
" <td>10</td>\n",
" <td>1.0</td>\n",
" <td>50128</td>\n",
" <td>87991</td>\n",
" <td>2211</td>\n",
" <td>790</td>\n",
" <td>1119</td>\n",
" <td>61027</td>\n",
" <td>32048</td>\n",
" <td>1386</td>\n",
" <td>58</td>\n",
" <td>1572.0</td>\n",
" <td>147.0</td>\n",
" <td>1777</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>139441</td>\n",
" <td>Photo</td>\n",
" <td>2</td>\n",
" <td>12</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>7244</td>\n",
" <td>13594</td>\n",
" <td>671</td>\n",
" <td>410</td>\n",
" <td>580</td>\n",
" <td>6228</td>\n",
" <td>3200</td>\n",
" <td>396</td>\n",
" <td>19</td>\n",
" <td>325.0</td>\n",
" <td>49.0</td>\n",
" <td>393</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>495</th>\n",
" <td>85093</td>\n",
" <td>Photo</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>4684</td>\n",
" <td>7536</td>\n",
" <td>733</td>\n",
" <td>708</td>\n",
" <td>985</td>\n",
" <td>4750</td>\n",
" <td>2876</td>\n",
" <td>392</td>\n",
" <td>5</td>\n",
" <td>53.0</td>\n",
" <td>26.0</td>\n",
" <td>84</td>\n",
" </tr>\n",
" <tr>\n",
" <th>496</th>\n",
" <td>81370</td>\n",
" <td>Photo</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>8</td>\n",
" <td>0.0</td>\n",
" <td>3480</td>\n",
" <td>6229</td>\n",
" <td>537</td>\n",
" <td>508</td>\n",
" <td>687</td>\n",
" <td>3961</td>\n",
" <td>2104</td>\n",
" <td>301</td>\n",
" <td>0</td>\n",
" <td>53.0</td>\n",
" <td>22.0</td>\n",
" <td>75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>497</th>\n",
" <td>81370</td>\n",
" <td>Photo</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>3778</td>\n",
" <td>7216</td>\n",
" <td>625</td>\n",
" <td>572</td>\n",
" <td>795</td>\n",
" <td>4742</td>\n",
" <td>2388</td>\n",
" <td>363</td>\n",
" <td>4</td>\n",
" <td>93.0</td>\n",
" <td>18.0</td>\n",
" <td>115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>498</th>\n",
" <td>81370</td>\n",
" <td>Photo</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>11</td>\n",
" <td>0.0</td>\n",
" <td>4156</td>\n",
" <td>7564</td>\n",
" <td>626</td>\n",
" <td>574</td>\n",
" <td>832</td>\n",
" <td>4534</td>\n",
" <td>2452</td>\n",
" <td>370</td>\n",
" <td>7</td>\n",
" <td>91.0</td>\n",
" <td>38.0</td>\n",
" <td>136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>499</th>\n",
" <td>81370</td>\n",
" <td>Photo</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>4188</td>\n",
" <td>7292</td>\n",
" <td>564</td>\n",
" <td>524</td>\n",
" <td>743</td>\n",
" <td>3861</td>\n",
" <td>2200</td>\n",
" <td>316</td>\n",
" <td>0</td>\n",
" <td>91.0</td>\n",
" <td>28.0</td>\n",
" <td>119</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>500 rows × 19 columns</p>\n",
"</div>"
],
"text/plain": [
" Page total likes Type Category Post Month Post Weekday Post Hour \\\n",
"0 139441 Photo 2 12 4 3 \n",
"1 139441 Status 2 12 3 10 \n",
"2 139441 Photo 3 12 3 3 \n",
"3 139441 Photo 2 12 2 10 \n",
"4 139441 Photo 2 12 2 3 \n",
".. ... ... ... ... ... ... \n",
"495 85093 Photo 3 1 7 2 \n",
"496 81370 Photo 2 1 5 8 \n",
"497 81370 Photo 1 1 5 2 \n",
"498 81370 Photo 3 1 4 11 \n",
"499 81370 Photo 2 1 4 4 \n",
"\n",
" Paid Lifetime Post Total Reach Lifetime Post Total Impressions \\\n",
"0 0.0 2752 5091 \n",
"1 0.0 10460 19057 \n",
"2 0.0 2413 4373 \n",
"3 1.0 50128 87991 \n",
"4 0.0 7244 13594 \n",
".. ... ... ... \n",
"495 0.0 4684 7536 \n",
"496 0.0 3480 6229 \n",
"497 0.0 3778 7216 \n",
"498 0.0 4156 7564 \n",
"499 NaN 4188 7292 \n",
"\n",
" Lifetime Engaged Users Lifetime Post Consumers \\\n",
"0 178 109 \n",
"1 1457 1361 \n",
"2 177 113 \n",
"3 2211 790 \n",
"4 671 410 \n",
".. ... ... \n",
"495 733 708 \n",
"496 537 508 \n",
"497 625 572 \n",
"498 626 574 \n",
"499 564 524 \n",
"\n",
" Lifetime Post Consumptions \\\n",
"0 159 \n",
"1 1674 \n",
"2 154 \n",
"3 1119 \n",
"4 580 \n",
".. ... \n",
"495 985 \n",
"496 687 \n",
"497 795 \n",
"498 832 \n",
"499 743 \n",
"\n",
" Lifetime Post Impressions by people who have liked your Page \\\n",
"0 3078 \n",
"1 11710 \n",
"2 2812 \n",
"3 61027 \n",
"4 6228 \n",
".. ... \n",
"495 4750 \n",
"496 3961 \n",
"497 4742 \n",
"498 4534 \n",
"499 3861 \n",
"\n",
" Lifetime Post reach by people who like your Page \\\n",
"0 1640 \n",
"1 6112 \n",
"2 1503 \n",
"3 32048 \n",
"4 3200 \n",
".. ... \n",
"495 2876 \n",
"496 2104 \n",
"497 2388 \n",
"498 2452 \n",
"499 2200 \n",
"\n",
" Lifetime People who have liked your Page and engaged with your post \\\n",
"0 119 \n",
"1 1108 \n",
"2 132 \n",
"3 1386 \n",
"4 396 \n",
".. ... \n",
"495 392 \n",
"496 301 \n",
"497 363 \n",
"498 370 \n",
"499 316 \n",
"\n",
" comment like share Total Interactions \n",
"0 4 79.0 17.0 100 \n",
"1 5 130.0 29.0 164 \n",
"2 0 66.0 14.0 80 \n",
"3 58 1572.0 147.0 1777 \n",
"4 19 325.0 49.0 393 \n",
".. ... ... ... ... \n",
"495 5 53.0 26.0 84 \n",
"496 0 53.0 22.0 75 \n",
"497 4 93.0 18.0 115 \n",
"498 7 91.0 38.0 136 \n",
"499 0 91.0 28.0 119 \n",
"\n",
"[500 rows x 19 columns]"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
},
"outputs": [],
"source": [
"# BEGIN SOLUTION\n",
"data = pd.read_csv(\"dataset_Facebook.csv\", sep=\";\")\n",
"data\n",
"### BEGIN SOLUTION\n",
"### END SOLUTION"
]
},
{
"cell_type": "markdown",
"id": "b5f2b0ff-e341-49d6-9928-d9448648e681",
"metadata": {},
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-1517dd4c342678e7",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Exercise 1\n",
"Compute the mean and standard deviation of the number of likes for each type of post."
"## H1: Paid posts = more interaction\n",
"\n",
"Paid contributions are more likely to be seen by many people. Among other things, more users interact with these posts. "
]
},
{
"cell_type": "code",
"execution_count": 63,
"execution_count": 1,
"id": "4a697468-fab6-499a-98a2-68dc5af7e516",
"metadata": {
"nbgrader": {
"grade": false,
"grade": true,
"grade_id": "cell-012b424d9de10c12",
"locked": false,
"points": 0,
"schema_version": 3,
"solution": true,
"task": false
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mean: \n",
" {'Photo': like 182.611765\n",
"dtype: float64, 'Status': like 176.711111\n",
"dtype: float64, 'Link': like 73.318182\n",
"dtype: float64, 'Video': like 231.428571\n",
"dtype: float64} \n",
" std: \n",
" {'Photo': like 345.245233\n",
"dtype: float64, 'Status': like 150.772499\n",
"dtype: float64, 'Link': like 85.74624\n",
"dtype: float64, 'Video': like 142.025652\n",
"dtype: float64}\n"
]
}
],
"outputs": [],
"source": [
"### BEGIN SOLUTION\n",
"type_of_posts = data[\"Type\"].unique()\n",
"mean_likes = {}\n",
"std_likes = {}\n",
"for posts in type_of_posts:\n",
" likes = data.loc[data[\"Type\"]==posts,[\"like\"]]\n",
" mean_likes[posts] = likes.mean()\n",
" std_likes[posts] = likes.std()\n",
" # print(f\"The mean likes of type {posts} is {mean_likes} and standard deviation is {std_likes}\") \n",
" \n",
"print('mean: \\n', mean_likes, '\\n std: \\n', std_likes)\n",
"### END SOLUTION"
]
},
{
"cell_type": "markdown",
"id": "b1b58071-43bd-42f0-9277-02de66cc5578",
"metadata": {},
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-9435c91c1af32ca3",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Exercise 2\n",
"## H2: Paid Videos\n",
"\n",
"Find which time of day is most popular for posting based on the current data-set."
"Videos are paid for more often and are shared more often. So it shows that advertising pays off. "
]
},
{
"cell_type": "code",
"execution_count": 78,
"execution_count": 3,
"id": "07d46bf8-5c69-40c9-8ea7-edbfe514f190",
"metadata": {
"nbgrader": {
"grade": false,
"grade": true,
"grade_id": "cell-3773d1ccd92283e4",
"locked": false,
"points": 0,
"schema_version": 3,
"solution": true,
"task": false
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Post Month</th>\n",
" <th>Post Weekday</th>\n",
" <th>Post Hour</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Post Month Post Weekday Post Hour\n",
"0 10 7 3"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"### BEGIN SOLUTION\n",
"data[[\"Post Month\", \"Post Weekday\", \"Post Hour\"]].apply(lambda x: x.mode())\n",
"### END SOLUTION"
]
},
{
"cell_type": "markdown",
"id": "a75a232c-ae0b-4d26-af16-ffcd06bbe40f",
"metadata": {},
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-5a54cabd55a2dfa0",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Exercise 3\n",
"## H3: Top 2%\n",
"\n",
"Compute the difference of likes between paid and unpaid posts."
"The top 2% of all posts were published in the afternoon on a Thursday. However, users interact with posts most frequently in the evening."
]
},
{
"cell_type": "code",
"execution_count": 101,
"execution_count": 4,
"id": "65311930-e7f5-4b9f-b30a-cd1769721b70",
"metadata": {
"nbgrader": {
"grade": false,
"grade": true,
"grade_id": "cell-23e55e763d064166",
"locked": false,
"points": 0,
"schema_version": 3,
"solution": true,
"task": false
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total likes on paid posts are like 32755.0\n",
"dtype: float64 and the total likes on unpaid posts are like 56040.0\n",
"dtype: float64 and the difference between likes is like 23285.0\n",
"dtype: float64.\n"
]
}
],
"outputs": [],
"source": [
"### BEGIN SOLUTION\n",
"likes_paid = data.loc[data[\"Paid\"]==1.0, [\"like\"]].sum()\n",
"total_likes = data[\"like\"].sum()\n",
"likes_unpaid = total_likes - likes_paid\n",
"print(f\"Total likes on paid posts are {likes_paid} and the total likes on unpaid posts are {likes_unpaid} and the difference between likes is {abs(likes_paid-likes_unpaid)}.\")\n",
"### END SOLUTION"
]
},
{
"cell_type": "markdown",
"id": "c480d5b4-8dcc-46ed-9318-6b479ee7d4f5",
"metadata": {},
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-08fb67d9e3a7d1d4",
"locked": true,
"schema_version": 3,
"solution": false,
"task": false
}
},
"source": [
"## Exercise 4\n",
"Compute the correlation between ”Lifetime Post Total Reach” and ”Lifetime Post\n",
"Total Impression”."
"## Simulate Posts\n",
"\n",
"Use the available data to apply an accurate simulation. Describe which properties a post must have in order to maximize its likes."
]
},
{
"cell_type": "code",
"execution_count": 104,
"execution_count": 5,
"id": "cb9eee29-943d-40fa-9551-d8749a906509",
"metadata": {
"nbgrader": {
@@ -670,19 +255,9 @@
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"correlation between the 2 columns is 0.6949263153309504\n"
]
}
],
"outputs": [],
"source": [
"### BEGIN SOLUTION\n",
"corr = data[\"Lifetime Post Total Reach\"].corr(data[\"Lifetime Post Total Impressions\"])\n",
"print(f\"correlation between the 2 columns is {corr}\")\n",
"### END SOLUTION"
]
}
@@ -703,7 +278,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.12.8"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -29,63 +29,6 @@
"* Draw insights by visualizing these relationships"
]
},
{
"cell_type": "markdown",
"id": "7122680a-8b1d-482a-9080-8276bf0a3d12",
"metadata": {},
"source": [
"---\n",
"\n",
"- [ ] Erhöhung der Dichte der Fahrten\n",
"- [ ] Zuordnung Tag, Zeit und Zeitzone klären\n",
"- [ ] Dichte der Fahrten - länge und Anzahl deutlicher herausarbeiten\n",
"- [ ] Dichte nach Ort (x,y) auf Maps? - Folium einbinden \n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "8b342eb8-81eb-4363-a333-5af25a442337",
"metadata": {},
"source": [
"## Import Libraries"
]
},
{
"cell_type": "markdown",
"id": "15a54b8d-5fa0-4541-bfaf-d543a757444d",
"metadata": {},
"source": [
"## Reading Datasets"
]
},
{
"cell_type": "markdown",
"id": "5ecdaa56-f420-4cbb-98c9-3b4a34504dff",
"metadata": {},
"source": [
"## Transform Datasets"
]
},
{
"cell_type": "markdown",
"id": "ab423532-e03e-4388-8cd7-5b6b2110f4f5",
"metadata": {},
"source": [
"## Plotting\n",
"\n",
"### Bar Plots\n",
"\n",
"### Folium"
]
},
{
"cell_type": "markdown",
"id": "2c0c850b-8da6-4b31-b56d-aed5bd689a97",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"id": "1b38edc7",
@@ -114,7 +57,8 @@
" * Identify the most and least busy day of the week\n",
"* Plot (bar plot) density of rides per hour\n",
" * Idensity the hours with the highest and least number of rides\n",
"* Plot (scatter plot) density of rides per location"
"* Plot (scatter plot) density of rides per location\n",
"* Use Foliums Polyline Feature to Map out the Trips"
]
},
{
@@ -551,7 +495,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.12.8"
}
},
"nbformat": 4,